Full Title of Your Paper

Peng Shi¹, Yuanqing Xia¹ and Kebir Boukas²,*

¹School of Technology
University of Glamorgan
Pontypridd, Wales, CF37 1DL, United Kingdom
{ pshi; yxia }@glam.ac.uk

²Department of Mechanical Engineering
Ecole polytechnique de Montreal
P. O. Box 6079, Station centre-ville, Montreal, Quebec, H3C 3A7, Canada
*Corresponding author: el-kebir.boukas@polymtl.ca

Received XXX 2020; accepted XXX 2020

ABSTRACT. Please write down the abstract of your paper here....

Keywords: Please write down the keywords of your paper here, such as, Intelligent
information, System control

1. Introduction. Please write down the Introduction of your paper here....

2. Problem Statement and Preliminaries. Please write down your section. When you cite
some references, please give numbers, such as, ... In the work of [1-3,5], the problem of...
For more results on this topic, we refer readers to [1,4,5] and the references therein....

Examples for writing definition, lemma, theorem, corollary, example, remark.

Definition 2.1. System (1) is stable if and only if...

Lemma 2.1. If system (1) is stable, then...

Theorem 2.1. Consider system (1) with the control law...

Proof: Let...

Corollary 2.1. If there is no uncertainty in system (1), i.e., \(\triangle A = 0 \), then...

Remark 2.1. It should be noted that the result in Theorem 2.1...

Example 2.1. Let us consider the following example...

\[
\begin{align*}
\dot{y} &= Ax(t) + Bu(t) + B_1w(t) \\
y(t) &= Cx(t) + Du(t) + D_1w(t)
\end{align*}
\]

3. Main Results. Here are the main results in this paper...

Definition 3.1. System (3) is stable if and only if...

Lemma 3.1. If system (3)-(4) is stable, then...

\[
\begin{align*}
\dot{y} &= Ax(t) + Bu(t) + B_1w(t) \\
y(t) &= Cx(t) + Du(t) + D_1w(t)
\end{align*}
\]

Theorem 3.1. Consider system (3) with the control law...

Proof: Let....
Corollary 3.1. If there is no uncertainty in system (3), i.e., $\triangle A = 0$, then...

Remark 3.1. It should be noted that the result in Theorem 2.1...

Example 3.1. Let us consider the following example...

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
x_{1}/x_{2} & A_{21} & A_{22} & A_{2k} \\
\hline
A_{11} & w_{1}/y_{1} & ... & w_{i}/y_{j} & w_{k}/y_{k} \\
A_{12} & w_{k+1}/y_{k+1} & ... & w_{k+j}/y_{k+j} & w_{2k}/y_{2k} \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
A_{1i} & \vdots & \vdots & $w_{(i-1)k+j}/y_{(i-1)k+j}$ & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
A_{1r} & $w_{(i-1)k+1}/y_{(i-1)k+1}$ & & w_{rk}/y_{rk} & \\
\hline
\end{tabular}
\end{center}

4. Control Design. In this section, we present...

\begin{align}
\dot{x}(t) &= Ax(t) + Bu(t) + B_{1}w(t) \\
y(t) &= Cx(t) + Du(t) + D_{1}w(t)
\end{align}

Definition 4.1. System (5) is stable if and only if...

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1}
\caption{Triangular-type membership functions for x_{j}}
\end{figure}

Lemma 4.1. If system (5) is stable, then...

Theorem 4.1. Consider system (5)-(6) with the control law...

Proof: Let....

Corollary 4.1. If there is no uncertainty in system (5)-(6), i.e., $\triangle A = 0$, then...

Remark 4.1. It should be noted that the result in Theorem 2.1...

Example 4.1. Let us consider the following example...

..

5. Conclusions. The conclusion of your paper is here...

Acknowledgment. This work is partially supported by... The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

