Full Title of Your Paper

Peng Shi¹, Yuanqing Xia¹,* and Junhu Ruan²

¹School of Technology
University of Glamorgan
Pontypridd, Wales, CF37 1DL, United Kingdom
pshi@glam.ac.uk; *Corresponding author: yxia@gam.ac.uk

²College of Economics and Management
Northwest A&F University
Yangling 712100, P. R. China

Received XXX 2021; accepted XXX 2021

ABSTRACT. Please write down the abstract of your paper here....

Keywords: Please write down the keywords of your paper here, such as, Intelligent information, System control

1. Introduction. Please write down the Introduction of your paper here....

2. Problem Statement and Preliminaries. Please write down your section. When you cite some references, please give numbers, such as, ... In the work of [1-3,5], the problem of... For more results on this topic, we refer readers to [1,4,5] and the references therein....

Examples for writing definition, lemma, theorem, corollary, example, remark.

Definition 2.1. System (1) is stable if and only if...

Lemma 2.1. If system (1) is stable, then...

Theorem 2.1. Consider system (1) with the control law...

Proof: Let...

Corollary 2.1. If there is no uncertainty in system (1), i.e., △A = 0, then...

Remark 2.1. It should be noted that the result in Theorem 2.1...

Example 2.1. Let us consider the following example...

\[
\begin{align*}
\dot{y} x(t) &= Ax(t) + Bu(t) + B_1w(t) \\
y(t) &= Cx(t) + Du(t) + D_1w(t)
\end{align*}
\] (1)

.........................

3. Main Results. Here are the main results in this paper...

Definition 3.1. System (3) is stable if and only if...

Lemma 3.1. If system (3)-(4) is stable, then...

\[
\begin{align*}
\dot{y} x(t) &= Ax(t) + Bu(t) + B_1w(t) \\
y(t) &= Cx(t) + Du(t) + D_1w(t)
\end{align*}
\] (3)

..............

Theorem 3.1. Consider system (3) with the control law...

Proof: Let...

Corollary 3.1. If there is no uncertainty in system (3), i.e., △A = 0, then...

Remark 3.1. It should be noted that the result in Theorem 3.1...

Example 3.1. Let us consider the following example...
TABLE 1. Fuzzy rule table by FSTRM

<table>
<thead>
<tr>
<th>x_1 / x_2</th>
<th>A_{21}</th>
<th>...</th>
<th>A_{2j}</th>
<th>...</th>
<th>A_{2k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{11}</td>
<td>w_{1j}</td>
<td>...</td>
<td>$w_{i j}$</td>
<td>...</td>
<td>$w_{k j}$</td>
</tr>
<tr>
<td>A_{12}</td>
<td>$w_{k+1 j}$</td>
<td>...</td>
<td>w_{k+j}</td>
<td>...</td>
<td>$w_{2k j}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_{1j}</td>
<td>...</td>
<td>...</td>
<td>$w_{(i-1)kJ}$</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_{1r}</td>
<td>$w_{(i-1)k+1}$</td>
<td>...</td>
<td>w_{rk}</td>
<td>...</td>
<td>y_{rk}</td>
</tr>
</tbody>
</table>

4. Control Design. In this section, we present...

\[
\ddot{x}(t) = Ax(t) + Bu(t) + B_1 w(t) \quad (5)
\]
\[
y(t) = Cx(t) + Du(t) + D_1 w(t) \quad (6)
\]

Definition 4.1. System (5) is stable if and only if...

![Figure 1. Triangular-type membership functions for x_j](image)

Lemma 4.1. If system (5) is stable, then...

Theorem 4.1. Consider system (5)-(6) with the control law...

Proof: Let...

Corollary 4.1. If there is no uncertainty in system (5)-(6), i.e., $\Delta A = 0$, then...

Remark 4.1. It should be noted that the result in Theorem 2.1...

Example 4.1. Let us consider the following example...

5. Conclusions. The conclusion of your paper is here...

Acknowledgment. This work is partially supported by... The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

2002.