Two Integral-Based Methods for Evaluating Intelligent Agricultural Greenhouses with Fuzzy Information

Junhu Ruan1,*, Yanbing Yang2, Xuping Wang3, Baofeng Shi1 and Yan Shi4

1College of Economics and Management
Northwest A&F University
No. 3, Taicheng Road, Yangling 712100, P. R. China
*Corresponding author: xxxxx@nwsuaf.edu.cn

2Department of Mathematics
Dalian Maritime University
No. 1, Linghai Road, Ganjingzi District, Dalian 116026, P. R. China
xxxxx@dlmu.edu.cn

3Institute of System Engineering
Dalian University of Technology
No. 2, Linggong Road, Ganjingzi District, Dalian 116024, P. R. China
xxxxx@dlt.edu.cn

4School of Industrial and Welfare Engineering
Tokai University
9-1-1 Toroku, Kumamoto 862-8652, Japan
xxxxx@ktmail.tokai-u.jp

Abstract. This work presents two integral-based methods for evaluating intelligent agricultural greenhouses when the evaluation index data are fuzzy values. From the view of the whole monitoring system of intelligent agricultural greenhouses, an evaluation index system which fully reflects the performance of five related subsystems is identified. We combine Liou and Wang’s integral-based method respectively with classic weighting method and TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) to formulate two integral-based evaluation methods of intelligent agricultural greenhouses with fuzzy information, that is, integral-based weighting method and integral-based TOPSIS method. Numerical results show the effectiveness and advantage of the proposed methods.

Keywords: Intelligent agricultural greenhouses, Fuzzy evaluation, Integral-based methods, TOPSIS