

PS-22: ICICIC2025-110

# Design and Optimization of a Dual-Piezoelectric-Actuated Microgripper with Two-Stage Flexure Amplification

Shitong Wang<sup>1,2</sup>, Jialin Shi<sup>1,\*</sup>, Jinzhe Wu<sup>1,2</sup>, Shenghang Zhai<sup>1,2</sup>, Tie Yang<sup>1,2</sup> and Lianqing Liu<sup>1,\*</sup>

<sup>1</sup>State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China 

<sup>2</sup>University of Chinese Academy of Sciences, Beijing 100049, P. R. China 

\*Corresponding authors: { shijialin; liulianqing }@sia.cn

#### Introduction

With the advancement of micro/nano technology, micro/ nano grippers have been widely applied in various fields. However, existing designs are predominantly single-functional, struggling to balance high stiffness and precise force control while lacking real-time force feedback. To address these limitations, this study proposes a novel piezoelectric-driven micro/nano gripper based on a dual-actuation mechanism. By incorporating an innovative amplification structure and modular design, the gripper achieves a high displacement amplification ratio and rapid adjustability of gripping force. Furthermore, the integration of force sensing enables closed-loop control, significantly enhancing versatility and operational intelligence. This research provides a new technical approach for developing multifunctional micro-manipulation tools with promising theoretical and practical implications.

#### **Research Questions**

This study focuses on addressing three critical challenges in micro-gripper technology: 1) functional singularity, where existing designs are limited to either high-stiffness/high-force or low-stiffness/precision operation modes; 2) insufficient adaptability, requiring device redesign for different operational scenarios; and 3) intelligent control deficiencies, particularly the lack of real-time force feedback capability. Through systematic investigation of these limitations, we aim to develop a novel micro-gripper system that overcomes these fundamental constraints in micro-nano manipulation applications.

## **Methodologies**

This study proposes an intelligent micro-gripper based on dual piezoelectric actuation and a two-stage amplification mechanism, achieving a displacement amplification ratio of 10.8 and force resolution of 1 mN through theoretical modeling, parametric simulation, and multiphysics coupling analysis, while integrating modular design for both high-stiffness/large-force and low-stiffness/precision-force control capabilities.

#### **Mathematical Formulas**

$$A_{m1} = \frac{\Delta x_1}{\Delta y} = \frac{\sin \theta_2 - \sin \theta_1}{2(\cos \theta_1 - \cos \theta_2)} \tag{1}$$

$$A_{m2} = \frac{\Delta x}{\Delta x_1} = \frac{l_{hf}}{l_{gh}} \tag{2}$$

$$A_m = A_{m1} \times A_{m2} \tag{3}$$

### **Figures**



Triangular magnification mechanism

Figure 1. Structural diagram of the microgripper base



Figure 2. Structural schematics

## **Figures**



Figure 3. Simulation results



Figure 4. Natural frequency

#### **Table**

Table 1. Table of key parameters

| Main parameters | R /mm | $\theta_{1}$ /° | $1_{h\!f}$ /mm | $1_{gh}$ /mm |
|-----------------|-------|-----------------|----------------|--------------|
| Value           | 0.75  | 15              | 29             | 9            |

#### Conclusion

In this work, we have presented the design and optimization of an intelligent micro-gripper capable of adapting to diverse operating conditions. The key innovations include dual piezoelectric actuation, a two-stage displacement-amplification mechanism, and modular, interchangeable gripping units. Through parametric simulation, the mechanism achieved an average displacement-amplification ratio of 10.8 (versus a theoretical 12.02) and demonstrated force-sensing sensitivity sufficient to resolve external loads as low as 1 mN.