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/ Introduction \ Mathematical Formulas

This paper proposes a finite-time model predictive Discrete-time s-MJSs:
control (MPC) strategy for discrete-time semi-Markov
jump nonlinear systems (s-MJSs) to address complex
sojourn-time distributions and nonlinear dynamics. By semi-Markov kernel
introducing a semi-Markov kernel (SMK) to characterize
mode transitions and employing incremental quadratic
constraints (IQC) to bound nonlinearities, the method

Xy = Arkxk +B,~k”k +q, +o,.

transition probabilities (TPs)

ensures stochastic finite-time stability (SFTS) under gpqéPY(Mn+1=q|M,,=P)
disturbances. The MPC framework minimizes control

inputs while satisfying stability constraints, the probability density function (PDF)
effectiveness of which has been validated through

numerical simulations. Results demonstrate the l//p,,(f)éPr(S,M=T|M,,+1=q,M,,=P)

effectiveness of the approach in achieving stochastic

finite-time stability with improved transient performance. . .
\ / discrete-time SMK
i ()= Pr(M,,=q.M,=p)Pr(M,, =q.5,,=t.M,=p) _

N(M,-p) Pyt —p) o)
incremental quadratic constraint
Research Questions {xk } o {x} =
1) Developing a stability-guaranteed control 4z e
framework for nonlinear semi-Markov jump systems X1 0%, + %L 00,0, + 410, %, +qL 0,4, = 0.
with arbitrary sojourn-time distributions, overcoming tochastic finite-ti tabilit
geometric/exponential constraints of conventional stochastic Tinite-time stability
MJSs.
2) Constructing a model predictive control E{A{G%xo}ﬁq :>E{kaGrkxk}»V’§c e®, vk ({12, H}
framework that jointly addresses nonlinear model,
stochastic switching, and input constraints through Model Predictive Control
synergistic integration of incremental quadratic cost function:
constraints and semi-Markov kernel. H-1
3) Demonstrating enhanced transient performance J, = Zuflkle Uy,
of the proposed finite-time MPC in short-duration =
operations (e.g., power system switching, robotic optimization condition:

fail-safe control) compared to asymptotic stabilization
approaches. min y
Fy.F,
stJ, <y,
/ Methodologies \

V(ka”kn)g V(xk,rkn),

1) Develop MPC framework using semi-Markov
kernel to handle arbitrary sojourn-time distributions,

ensuring stochastic finite-time stability for nonlinear E{V(xk 7, )} SE{V(xk 7 )}’
S'MJSS n+l n+l n n
2) Integrate 1QC with SMK in MPC to jointly
address nonlinear dynamics, stochastic switching, and A ( )
input constraints via SDP optimization. — X, G x, <c,.
3) Guarantee transient performance with finite- lmm( p)

time stability (validated numerically), outperforming

\asymptotic methods in short-duration operations. /
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Simulation of switching signal with sojourn times
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Figure 1. Simulation of switching signal
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Figure 2. Open-loop s-MJSs
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Mathematical Formulas

core formula of LMI

min ¥y
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Figure 3. Closed-loop s-MJSs

/ Conclusion \

This paper develops a finite-time model predictive
control (MPC) strategy for discrete-time semi-Markov
jump nonlinear systems (s-MJSs). By introducing the
multi-step semi-Markov kernel and incremental quadratic
constraints, the proposed method effectively handles the
complex sojourn-time  distributions and system
nonlinearities. Theoretical analysis demonstrates that the
designed controller ensures stochastic finite-time stability
of the closed-loop system, even in the presence of
disturbances.  Simulation  results validate the
effectiveness of the proposed approach, highlighting its
potential for practical engineering applications involving

Qmplex switching systems.
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